Composite Material Substitution in Formula 1

Implications for Industry

Mark Preston
Managing Director
Introduction

- Motorsports uses a large amount of composite material
- Industries such as Aerospace have ambitious targets
- Automotive targets are based around carbon reduction
- Safety is a key driver of composite substitution in F1 – monocoque is an example of this
How is Motorsports Relevant to Us?

- Question most often asked
- What are the key aspects of F1?
- How does it compare?
- How does F1 deal with innovation, risk and development
F1 – Basic Technical Facts

- 2,500 kg downforce
- 350 km/h top speed
- 5g deceleration
- 750 BHP @ 18,000 RPM
- 425kg without engine and driver
- Typical 80-900° C operating temperatures
- + 70% carbon parts – structural and cosmetic
Typical Manufacturing Schedule

- Design – 4 weeks
- Moulds – 2 weeks
- First off parts – 1 week
- Testing – 1 week
- TOTAL = 8 weeks
Pace of Development

100m & 200m World Record
Vs.
F1 Lap Time Decrease
0.2% vs. 1.4% per year

F1 Budgets £50-250m per year
Pace is driven by innovation
F1 Innovation Cycle

- Ideas pipeline
- Up to 20 iterations of parts per year
- “Prototyping competition”
 - Volume < 5 off
 - Design / Manufacturing Cycle 8-14 weeks
- Sign off techniques allow parts to be delivered straight to the track
- High risk, high visibility of failure (500m viewers worldwide)
Risk / Failure

- Is F1 really high risk?
- Risk is composed of 2 elements
 - Uncertainty (probability of success/failure)
 - Consequences (of an event)
- Risk Assessment Matrix
- Failure types
 - Performance - Technical Failure
 - Programmatic - (cost, timing)
Risk in F1

• Has risk changed?
• YES!
• *Success is 99% Failure* - Soichiro Honda
 – “Why haven’t you failed anything yet, you’re not trying hard enough”
 – Typical engineers response/questions “How many chances do we get before people panic?!”

Photos: Jim Clark at Lotus and Red Bull factory 2009
NASA Technology Readiness Levels (TRL)
F1 Safety Progression

- Fire extinguishers
- Seat Belts
- Helmets
- Monocoque
Monocoque Development

- Mono – single
- Coque – shell example = egg
- Cocoon for the driver
- Seatbelts
- Internal padding

Sketches from “The Egg of Columbus”, thechaparralfiles.com
Why Composites?

- Specific Modulus
- Geometric Efficiencies
- Manufacturing
 - Late calls
 - Intricate shapes
No Return?

Tubular Chassis

Folded Aluminium

Weight

Safety / Performance

Is it possible to return easily?

Modern Monocoque
F1 - Evolution of Carbon Substitution

- Bodywork
- Wings
- Monocoque
- Suspension
- Gearbox
- Engine Parts

Increasing complexity, risk, load, temperature

Load / Size

Time / Risk / Competitive Advantage
Rear Top Wishbone

Problem:
- Aerodynamics – smallest size possible
- Temperature – rear of the car near exhausts
- Cost – reduce the price of flexures
- Stiffness – reduce the joints
- Strength – Make it one piece

Weight Reduction
Original Steel Part - 100%
Carbon and steel - 52.7%
Full carbon - 41.7%
787 Dreamliner

- High Composite Target
- High risk
- Very public
- Recent problems will make it harder to return – Mitsubishi has responded with aluminium return
- Why should there only be 1 chance at failure?
- Consequences are high
- Can motorsports provide an “Open Source” innovation opportunities?
Blue Sky Thinking

- Cognitive differences
- “Fail often, fail early”
- Open innovation
- “Killer App” – could F1 provide in composites?
- Can there be a way to provide the necessary learning in a different sector?
- If so, can aerospace truly benefit from motorsports and sports?
Summary

• Composite substitution in Formula 1 has gone further than most industries
• The benefits to safety have been large
• There are many examples of parts that would face large performance losses if returned to metals – the monocoque is one example
• Innovation in F1 and other sports can transfer to aerospace reducing risk